Prove the Identity: (csc α - cot α)^2 = (1-cos α)/(1+cos α)

By Anonymous (not verified), 16 July, 2024

(csc α -cot α)2 = 1-cos α1+cos α 

csc2α - 2cotα cscα + cot2α

Note:
csc α =1sin α
and...
cot α =cos αsin α

csc2α - 2(cosαsinα)(1sinα) + cos2αsin2α  

1sin2α - 2cosαsin2α+ cos2αsin2α 

1 - 2cosα + cos2αsin2α 
 

Note: 
sin2α = 1-cos2α 
and...
1-2cosα+cos2α =(1-cosα)(1+cosα)

(1-cosα)(1+cosα)1-cos2α   

Note: 
1-cos2α = (1-cosα)(1+cosα)

(1cosα)(1cosα) (1cosα)(1+cosα) 

(1-cosα)(1+cosα)=(1-cosα)(1+cosα)

Comments

Restricted HTML

  • Allowed HTML tags: <a href hreflang> <em> <strong> <cite> <blockquote cite> <code> <ul type> <ol start type> <li> <dl> <dt> <dd> <h2 id> <h3 id> <h4 id> <h5 id> <h6 id>
  • Lines and paragraphs break automatically.
  • Web page addresses and email addresses turn into links automatically.