Identities: Sum to Product

By Anonymous (not verified), 5 September, 2024

cosδ-cos7δ sinδ +sin7δ =tan3δ
 

From Sum-to-product formula for cosine
cosα+cosβ =-2 sin(α+β2) sin(α-β2)
and
sinα+sinβ =2 sin(α+β2) cos(α-β2)

=-2 sin(δ+7δ2) sin(δ-7δ2)2sin(δ+7δ2)cos(δ-7δ2)

=-2 sin(8δ2) sin(-6δ2)2sin(8δ2)cos(-6δ2)

=-2 sin(8δ2) sin(-6δ2)2sin(8δ2)cos(-6δ2)

=-2 sin(4δ) sin(-3δ)2sin(4δ)cos(-3δ)

=-2sin(4δ) sin(-3δ)2sin(4δ)cos(-3δ)

=-sin(-3δ)cos(-3δ)

=sin3δcos(-3δ)

Note: By odd/even trigonometric function identities
Even Trigonometric Function Identities:
  1. Cosine is an even function; cos(-x)=cos(x)
  2. Secant is an even function;sec(-x)=sec(x)
Odd Trigonometric Function Identities:

 
  1. Sine is an odd function;sin(-x)=-sin(x)
  2. Cosecant is an odd function; csc(-x)=-csc(x)
  3. Tangent is an odd function;tan(-x)=-tan(x)

=sin3δcos3δ

=tan3δ

 

Comments

Restricted HTML

  • Allowed HTML tags: <a href hreflang> <em> <strong> <cite> <blockquote cite> <code> <ul type> <ol start type> <li> <dl> <dt> <dd> <h2 id> <h3 id> <h4 id> <h5 id> <h6 id>
  • Lines and paragraphs break automatically.
  • Web page addresses and email addresses turn into links automatically.