Trigonometric Identities

By Anonymous (not verified), 6 September, 2024

Trigonometric Identities

  1. Relations of functions

    tanϕ = sinϕcosϕ

    cotϕ =1tanϕ=cosϕsinϕ

    secϕ =1cosϕ

    cscϕ =1sinϕ


     

  2. Pythagorean Formula

    sin2ϕ +cos2ϕ =1

    sec2ϕ = 1+tan2ϕ


     

  3. Trigonometric functions in terms of their complements

    sinϕ =cos(π2-ϕ )

    cosϕ =sin(π2-ϕ )

    tanϕ =cot(π2-ϕ )

    cotϕ =tan(π2-ϕ )

    secϕ =csc(π2-ϕ )

    cscϕ =sec(π2-ϕ )


     

  4. Trigonometric functions in terms of their supplements

    sin(π-θ)=sinθ

    cos(π-θ)=-cosθ

    tan(π-θ)=-tanθ


     

  5. Trigonometric Periodicity Identities

    sinϕ =sin(π + 2π )

    cosϕ =cos(π + 2π )

    tanϕ =tan(π + π )

    cotϕ =cot(π + π )

    secϕ =sec(π + 2π )

    cscϕ =csc(π + 2π )

    consequently...

    sinϕ =-sin(π + π )

    cosϕ =-cos(π + π )

    cscϕ =-csc(π + π )

    secϕ =-sec(π + π )


     

  6. Negative Angle Indentities

    sin(-ϕ) =-sinϕ

    cos(-ϕ) =cosϕ

    tan(-ϕ) =-tanϕ


     

  7. The sum and difference of two angles

    sin(α+β) =sinα cosβ + cosα sinβ

    cos(α+β) =cosα cosβ - sinα sinβ

    sin(α-β) =sinα cosβ - cosα sinβ

    cos(α-β) =cosα cosβ + sinα sinβ

    tan(α+β)=tanα+tanβ1-tanα tanβ

    tan(α-β)=tanα-tanβ1+tanα tanβ


     

  8. Double angle formulas

    sin2ϕ = 2sinϕ cosϕ

    cos2ϕ = cos2ϕ - sin2ϕ

    cos2ϕ = 2cos2ϕ - 1

    cos2ϕ =1-2sin2ϕ

    tan2θ=2tanθ1-tan2θ


     

  9. Half angle formulas

    sinθ2=±1-cosθ2

    cosθ2=±1+cosθ2

    tanθ2=sinθ1+cosθ=1-cosθsinθ

Comments

Restricted HTML

  • Allowed HTML tags: <a href hreflang> <em> <strong> <cite> <blockquote cite> <code> <ul type> <ol start type> <li> <dl> <dt> <dd> <h2 id> <h3 id> <h4 id> <h5 id> <h6 id>
  • Lines and paragraphs break automatically.
  • Web page addresses and email addresses turn into links automatically.